Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Joseph P. Herres,^a Mark A. Forman^a and Kraig A. Wheeler^{b*}

^aSt Joseph's University, Department of Chemistry, 5600 City Avenue, Philadelphia, PA 19131, USA, and ^bEastern Illinios University, Department of Chemistry, 600 Lincoln Avenue, Charleston, IL 61920, USA

Correspondence e-mail: cfkaw@eiu.edu

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å R factor = 0.048 wR factor = 0.119 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

11,12-Bis(2,2-dimethylpropyl)-9,10-dihydro-9,10-ethenoanthracene

The title compound, $C_{26}H_{32}$, was retrieved as one of three products from the reaction of *tert*-butyllithium with 11,12-dimethylene-9,10-dihydroethenoanthracene and 4,5-diiodopentacyclo[4.3.0.0^{2,4}.0^{3,8}.0^{5,7}]nonane. The structure shows the expected ethenoanthracene geometry with molecules arranged *via* van der Waals surfaces.

Received 10 October 2005 Accepted 26 October 2005 Online 5 November 2005

Comment

As part of our program directed at the synthesis and study of pyramidalized alkenes, we recently investigated the dehalogenation of 4,5-diiodopentacyclo[$4.3.0.0^{2.4}.0^{3.8}.0^{5.7}$]nonane with *t*-butyllithium in the presence of the trapping agent 11,12-dimethylene-9,10-dihydroethenoanthracene. This reaction affords small amounts of the expected Diels–Alder adduct and two additional products that result from *t*-butyllithium addition to the conjugated diene. The structure of the major product of this reaction, 11-(2,2-dimethylpropyl)-12-{2-[12-(2,2-dimethylpropyl)-9,10-ethenoanthracene-11-yl]ethyl}-9,10-dihydro-9,10-ethenoanthracene (II), has been described previously (Herres *et al.*, 2005). This investigation reports the structure of 11,12-bis(2,2-dimethylpropyl)-9,10-dihydro-9,10-ethenoanthracene, (I), which was also isolated from the reaction product mixture and crystallized from ethanol.

Since it is known that *t*-butyllthium reacts with conjugated dienes such as 1,3-butadiene to give neopentylallyllithium (Glaze *et al.*, 1972), the likely scenario for the formation of (I) proceeds by *t*-butyllithium addition to the conjugated diene moiety of the dimethyleneanthracene. The resulting allyllithium then undergoes lithium–iodine exchange with 4,5-diiodopentacyclo[$4.3.0.0^{2.4}.0^{3.8}.0^{5.7}$]nonane, with subsequent coupling to a second equivalent of *t*-butyllithium.

The molecular structure (Fig. 1) of (I) shows the expected boat conformation of the central bicyclo[2.2.2]octatriene fragment. In the crystal structure, the two adjacent dimethylpropyl groups are located in positions that reduce the effects of intramolecular steric repulsion. These anticipated conformational features result in a molecular framework characterized by local pseudo- C_2 symmetry. As shown in Fig. 2, the

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 1

The molecular structure of (I), showing the atom-labeling scheme and displacement ellipsoids at the 50% probability level.

crystal structure of (I) contains two-dimensional molecular patterns. These layers form alternating motifs with interfaces consisting of either aryl or dimethylpropyl groups with intermolecular distances larger than the sum of the van der Waals radii.

Experimental

To a solution of 4,5-diiodopentacyclo[4.3.0.0^{2,4}.0^{3,8}.0^{5,7}]nonane (348 mg, 0.9405 mmol) and 11,12-dimethylene-9,10-dihydroethenoanthracene (259.9 mg, 1.1286 mmol, 1.2 equivalents), in dry heptane (11.47 ml), and diethyl ether (834 µl) at 195 K was added dropwise a solution of tert-butyllithium in heptane (1.35 ml, 2.2 equivalents, 2.0691 mmol) under argon. The mixture was allowed to warm to 273 K, stirred at this temperature for 2 h and quenched with methanol (6 ml). Water (20 ml) was added, and the mixture was extracted with CH_2Cl_2 (3 × 30 ml), dried over Na_2SO_4 and concentrated in vacuo. Silica gel chromatography (gradient elution to 80:20, petroleum ether-diethyl ether) afforded pure (I). Recrystallization from absolute ethanol yielded crystals (m.p. 402-404 K). ¹H NMR (400 MHz, CDCl₃): δ 0.86 (s, 18H), 2.17 (s, 4H), 4.89 (s, 2H), 6.88-6.92 (m, 4H), 7.18-7.22 (m, 4H); 13 C NMR (100.5 MHz, CDCl₃): δ 30.5 (CH₃), 33.3 (C), 44.6 (CH2), 57.2 (CH), 122.7 (CH), 124.1 (CH), 144.5 (C), 146.5 (C).

Crystal data

$D_x = 1.080 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 7338
reflections
$\theta = 2.3-27.8^{\circ}$
$\mu = 0.06 \text{ mm}^{-1}$
T = 173 (2) K
Plate, colorless
$0.24 \times 0.18 \times 0.02 \ \text{mm}$
3235 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.048$
$\theta_{\rm max} = 25.4^{\circ}$
$h = -42 \rightarrow 42$
$k = -15 \rightarrow 15$
$l = -11 \rightarrow 11$

Figure 2

View of the molecular packing of (I), projected approximately down the c axis.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0624P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.048$	+ 1.9402P]
$wR(F^2) = 0.120$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
3878 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

1.401 (2)	C10-C4A	1.5266 (19)
1.3992 (19)	C10-C12	1.5409 (19)
1.5265 (19)	C11-C12	1.337 (2)
1.5296 (19)	C11-C18	1.5104 (19)
1.544 (2)	C12-C13	1.511 (2)
1.5245 (19)		
127.32 (13)	C11-C12-C13	128.13 (13)
113.42 (12)	C11-C12-C10	113.36 (12)
80.48 (16)	C9-C11-C18-C19	79.72 (16)
62.88 (17)	C11-C18-C19-C20	60.78 (17)
	1.401 (2) 1.3992 (19) 1.5265 (19) 1.5296 (19) 1.5245 (19) 1.5245 (19) 127.32 (13) 113.42 (12) 80.48 (16) 62.88 (17)	$\begin{array}{ccccccc} 1.401 \ (2) & C10-C4A \\ 1.3992 \ (19) & C10-C12 \\ 1.5265 \ (19) & C11-C12 \\ 1.5296 \ (19) & C11-C18 \\ 1.5245 \ (19) & C12-C13 \\ 1.5245 \ (19) & & \\ \end{array}$

All H atoms were treated as riding with C-H distances of 0.95 $(C_{Ar}H)$, 0.98 (CH₃), 0.99 (CH₂) and 1.00 Å (CH), and with $U_{iso}(H) =$ $1.2U_{eq}(C)$ [1.5 $U_{eq}(C)$ for methyl H atoms]. Riding methyl H atoms were allowed to rotate freely during refinement.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT and XPREP (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics:

X-SEED; software used to prepare material for publication: *X-SEED* (Barbour, 2001).

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund Type B and the National Science Foundation (DMR-9414042) for this crystallographic investigation. MAF thanks Saint Joseph's University for a Summer Research Grant. JPH gratefully acknowledges Pfizer Inc. for a Summer Undergraduate Research Fellowship (SURF).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). *SMART* (Version 5.625) and *XPREP* (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). SAINT. Version 6.36A. Bruker AXS Inc., Madison, Wisconsin, USA.
- Glaze, W. H., Hanicak, J. E., Moore, M. L. & Chaudhuri, J. (1972). J. Organomet. Chem. 44, 39–48.
- Herres, J. P., Forman, M. A. & Wheeler, K. A. (2005). Acta Cryst. E61, o1223o1225.